Hydraulic aspects of unsteady nonlinear channel waves

Primary tabs

Erre a témakiírásra nem lehet jelentkezni.
Nyilvántartási szám: 
17/15
Témavezető neve: 
Témavezető e-mail címe:
szabo.gabor@epito.bme.hu
A témavezető teljes publikációs listája az MTMT-ben:
A téma rövid leírása, a kidolgozandó feladat részletezése: 
This research concentrates on the unsteady and turbulent phenomena of open channel flow, in particular, wave motion of such amplitude that the simple linear wave approximation of Airy, so much preferred in the usual engineering practice, is no longer appropriate. The observed phenomena include both weakly nonlinear waves (typically approximated by the Korteweg–de Vries equation or the like) and strongly nonlinear ones, like solitary waves (which have analytic theory). While the former waves often can be dealt with using perturbation techniques, the properties of the latter can only be explained with fully nonlinear models. Nonlinear waves can be generated by hydraulic structures (e.g. during flood conditions), by navigation, by the operation of hydraulic controls or by accidents.
 In actual channels wind shear and bed shear also interact with the wave field, thus the necessary approach exceeds the framework of the free surface flow model.
 Nonlinearity may result in interaction between waves and mean flow, wave instability, wave breaking (with the associated air entrainment) etc.
 Such hydrodynamic phenomena can affect the hydraulic conditions in the channel and pose engineering problems. The more violent impacts of water waves on walls create velocities and pressures having magnitudes much larger than those associated with the propagation of ordinary waves under gravity. The related unexpected erosive action (especially on dykes and other earthen structures) can warrant the reinforcement or redesign of the channel (or the operation thereof) if concentrated or enduring intensive (wave) action occurs at certain points. Another, not less interesting effect is the wave action on the bed material: dynamic sediment transport processes are generated by the dynamic action of the aforementioned flow phenomena.
 We expect that the study of these phenomena will be done by using at least two of the following three approaches: theory, experiments, numerical analysis. Experiments may include field observations. The development of a new measurement technique or numerical method is also considered as a valid scientific achievement. For the analysis of the flow fields and the wave phenomena modern mathematical tools like wavelet transformation or the Hilbert spectrum has to be also considered besides the classical Fourier transformation.
A téma meghatározó irodalma: 
1. John V. Wehausen, Edmund V. Laitone: Surface Waves. In: Encyclopedia of Physics (ed.: S. Flügge), Vol. IX. (Fluid Dynamics III) pp. 446-778 (Springer, 1960).
2. F. M. Henderson: Open Channel Flow (Macmillan, New York, 1966).
3. L W Schwartz, and , J D Fenton: Strongly Nonlinear Waves, Annual Review of Fluid Mechanics, 14 (1982).
4. Frédéric Dias, Christian Kharif: Nonlinear gravity and capillary-gravity waves, Annual Review of Fluid Mechanics, 31 (1999).
5. Oliver Bühler: Wave–Vortex Interactions in Fluids..., Annual Review of Fluid Mechanics, 42 (2010).
6. Kai Schneider, Oleg V. Vasilyev: Wavelet Methods in Computational Fluid Dynamics Annual Review of Fluid Mechanics 42 (2010).
7. Norden E. Huang, Zheng Shen, Steven R. Long: A new view of nonlinear water waves: The Hilbert Spectrum, Annual Review of Fluid Mechanics, 31 (1999).
8. Ehab S. Selima, Xiaohua Yao, and Abdul-Majid Wazwaz: Multiple and exact soliton solutions of the perturbed Korteweg–de Vries equation of long surface
waves in a convective fluid via Painlevé analysis, factorization, and simplest equation methods, Phys. Rev. E 95, 062211 (2017).
9. D. H. Peregrine: Water-Wave Impact On Walls, Annual Review of Fluid Mechanics, 35 (2003).
10. Hassan Aref, John R. Blake, Marko Budišić, Silvana S.S. Cardoso, Julyan H.E. Cartwright, Herman J. H. Clercx, Kamal El Omari, Ulrike Feudel, Ramin Golestanian, Emmanuelle Gouillart, GertJan F. van Heijst, Tatyana S. Krasnopolskaya, Yves Le Guer, Robert S. MacKay, Vyacheslav V. Meleshko, Guy Metcalfe, Igor Mezić, Alessandro P.S. de Moura, Oreste Piro, Michel F.M. Speetjens, Rob Sturman, Jean-Luc Thiffeault, and Idan Tuval: Frontiers of chaotic advection, Rev. Mod. Phys. 89, 025007 (2017).
 
A téma hazai és nemzetközi folyóiratai: 
1. ANNUAL REVIEW OF FLUID MECHANICS
2. JOURNAL OF FLIUD MECHANICS
3. PHYSICS OF FLUIDS (ISSN: 1070-6631) (eISSN: 1089-7666)
4. EXPERIMENTS IN FLUIDS (ISSN: 0723-4864)
5. JOURNAL OF HYDRAULIC ENGINEERING (ASCE)
6. JOURNAL OF HYDRAULIC RESEARCH (IAHR)
7. PERIODICA POLYTECHNICA-CIVIL ENGINEERING (ISSN: 0553-6626) (eISSN: 1587-3773)
 
A témavezető utóbbi tíz évben megjelent 5 legfontosabb publikációja: 
1. B. Sándor; K Gábor Szabó: Symmetry algebras of steady, depth-averaged vorticity equations, solutions with special depth functions, Journal of Mathematical Physics (2017, submitted).
2. B Farkas; G Paál; K G Szabó: Descriptive analysis of a mode transition of the flow over an open cavity, Physics of Fluids 24: (2) Paper 027102. (2012).
3. I Biró; K G Szabó; B Gyüre; I M Jánosi; T Tél: Power-law decaying oscillations of neutrally buoyant spheres in continuously stratified fluid, Physics of Fluids 20:(5) Paper 051705. (2008).
4. M Vincze; P Kozma; B Gyüre, I M Jánosi; K G Szabó; T Tél: Amplified internal pulsations on a stratified exchange flow excited by interaction between a thin sill and external seiche, Physics of Fluids 19: (10) Paper 108108. (2007).
5. G Halász; B Gyüre; I M Jánosi; K G Szabó; T Tél: Vortex flow generated by a magnetic stirrer, American Journal of Physics 75: (12) pp. 1092-1098. (2007).
 
A témavezető fenti folyóiratokban megjelent 5 közleménye: 
1. Janosi I M; Jan D; Szabo K G; Tel T: Turbulent drag reduction in dam-break flows, Experiments in Fluids 37: (2) pp. 219-229. (2004).
2. M Vincze; P Kozma; B Gyüre, I M Jánosi; K G Szabó; T Tél: Amplified internal pulsations on a stratified exchange flow excited by interaction between a thin sill and external seiche, Physics of Fluids 19: (10) Paper 108108. (2007).
3. B Farkas; G Paál; K G Szabó: Descriptive analysis of a mode transition of the flow over an open cavity, Physics of Fluids 24: (2) Paper 027102. (2012).
4. I Biró; K G Szabó; B Gyüre; I M Jánosi; T Tél: Power-law decaying oscillations of neutrally buoyant spheres in continuously stratified fluid, Physics of Fluids 20: (5) Paper 051705. (2008).
5. Márton Zsugyel; K Gábor Szabó, Zs Melinda Kiss; János Józsa; Giuseppe Ciraolo; Carmelo Nasello; Enrico Napoli; Tamás Tél: Detecting the chaotic nature of advection in complex river flows, Periodica Polytechnica-Civil Engineering 56: (1) pp. 97-106. (2012).
 
Hallgató: 

A témavezető eddigi doktoranduszai

Havasi-Tóth Balázs (2013/2016/2020)
ALSHOUFI Hajar (2017/2021/2022)
Státusz: 
elfogadott