Three-dimensional failure modes of masonry barrel vaults

Primary tabs

Erre a témakiírásra nem lehet jelentkezni.
Nyilvántartási szám: 
19/07
Témavezető neve: 
Témavezető e-mail címe:
bagi.katalin@emk.bme.hu
A témavezető teljes publikációs listája az MTMT-ben:
A téma rövid leírása, a kidolgozandó feladat részletezése: 
Masonry barrel vaults are widely applied structural members in several historic buildings like arch bridges, churches, baths etc. The in-plane behaviour of arches, as a 2D problem, is rather well explored today, but only a few studies exist about the out-of-plane effects. The aim of the proposed research is to discover the three-dimensional behaviour of barrels. Novel analysis is to be done on barrels with different bond patterns under selfweight, submitted to support displacements in longitudinal direction, and to live loads which have or do not have a longitudinal component. These tasks should be performed by taking into consideration the discrete built-up of the barrel (see below). Based on gaining a better understanding this way, strengthening techniques could be proposed. 
  
Masonry structures exhibit a complex nonlinear mechanical behaviour. The contacts between the blocks are strong for compression, but they hardly resist any tension, which introduces a non-symmetric material behaviour; in addition, the joints between blocks are often cohesionless which means they obey frictional laws. The overall structural behaviour is strongly influenced by the applied voussoir bond pattern and, in general, by the discrete built-up of the structure. Individual stones may fall out, slide along their neighbours, their contacts may partly or fully be cracked etc. Such phenomena are very difficult to be reflected with the usual continuum-based methods like Finite Element Method or Finite Difference Method. Hence different alternative, non-continuous methods (discrete element method; limit state analysis; graphostatic methods etc) are used in the engineering practice. In the proposed research such alternative methods should be applied to explore the 3D mechanics of barrel vaults and the effect of the different bond patterns. As the main outcome, suggestions should be given how to improve the performance of these structures by using either usual strengthening techniques (like tension ties, FRP strips, choice of suitable bond pattern etc) or by inventing new possibilities. 
  
The 3DEC discrete element code is available for performing the proposed research. Demonstrated previous experience in using a discrete element code with polyhedral elements is indispensable.
A téma meghatározó irodalma: 
1. Sarhosis, V., Bagi, K., et al (eds): Computational Modeling of Masonry Structures Using the Discrete Element Method. IGI Global, Hershey, pp. 91-104, 2016
2. Heyman, J. (1966): The Stone Skeleton. Int. J. Solids and Structures, Vol. 2, pp. 249-279
3. Heyman (1977): Equilibrium of shell structures. Oxford University Press, Oxford, UK
4. 8. Bagi, K.: When Heyman’s Safe Theorem for Rigid Block Systems Fails: Non-Heymanian Collapse Modes of Masonry Structures. Int. J. Solids and Structures, Vol. 51, pp. 2696-2705, 2014
5. Lancaster L.C. (2015): Innovative Vaulting in the Architecture of the Roman Empire. Chapter 3: Barrel Vaults of Brick. Cambridge University Press, UK
A téma hazai és nemzetközi folyóiratai: 
1. Engineering Structures
2. International Journal of Architectural Heritage
3. Computers and Structures
4. International Journal of Solids and Structures
5. Meccanica
6. International Journal of Masonry Research and Innovation
A témavezető utóbbi tíz évben megjelent 5 legfontosabb publikációja: 
1. Tóth, A.R. – Orbán, Z. – Bagi, K.: Discrete element analysis of a stone masonry arch. Mechanics Research Communications, Vol. 36 (4), pp. 469-480, 2009
2. Bagi, K.: When Heyman’s Safe Theorem for Rigid Block Systems Fails: Non-Heymanian Collapse Modes of Masonry Structures. Int. J. Solids and Structures, Vol. 51, pp. 2696-2705, 2014
3. Lengyel, G. – Bagi, K.: Numerical analysis of the role of ribs in masonry crossvaults. Computers & Structures, Vol. 158(1), pp. 42-60, 2015
4. Simon, J. – Bagi, K.: DEM analysis of the minimum thickness of oval masonry domes. Int. J. Architectural Heritage, Vol. 10(4), pp. 457-475, 2016
5. Rigo, B. – Bagi, K.: Discrete element analysis of stone cantilever stairs. Meccanica, Vol. 53(7), pp. 1571-1589, 2018
A témavezető fenti folyóiratokban megjelent 5 közleménye: 
1. Bagi, K.: When Heyman’s Safe Theorem for Rigid Block Systems Fails: Non-Heymanian Collapse Modes of Masonry Structures. Int. J. Solids and Structures, Vol. 51, pp. 2696-2705, 2014
2. Lengyel, G. – Bagi, K.: Numerical analysis of the role of ribs in masonry crossvaults. Computers & Structures, Vol. 158(1), pp. 42-60, 2015
3. Simon, J. – Bagi, K.: DEM analysis of the minimum thickness of oval masonry domes. Int. J. Architectural Heritage, Vol. 10(4), pp. 457-475, 2016
4. Forgács, T.- Sarhosis, V. – Bagi, K.: Minimum thickness of semi-circular skewed masonry arches. Engineering Structures, Vol. 140(1), pp. 317–336, 2017
5. Rigo, B. – Bagi, K.: Discrete element analysis of stone cantilever stairs. Meccanica, Vol. 53(7), pp. 1571-1589, 2018
Hallgató: 

A témavezető eddigi doktoranduszai

Chen Shipeng (2018/2023/)
Lengyel Gábor (2013/2016/2018)
Státusz: 
elfogadott